China factory 36mm Diameter Long Life Micro Brushless 12V/24V Pm DC Planetary Gear Motor vacuum pump booster

Product Description

36mm Diameter Long Life Micro Brushless 12V/24V PM DC Planetary Gear Motor

Product overview:

Planetary gearheads feature extremely high power transmission with a very short design. The modular design and the scaled stages provide the basis for a customer-specific solution. Metal components make use in a wide range of applications possible.At the same time they have a very compact form, low weight, and excellent efficiency. Self-centering planet gears ensure a symmetrical force distribution. The ring gear also forms the housing of the gearbox. The gearbox output shaft is supported in 2 ball bearings so that it can withstand high axial and radial loads. The gearboxes are customized, e.g. for use in especially low ambient temperatures, or as high-power gearboxes with reinforced output shafts, or with special lubricants for very long service life.

DC brush & coreless planetary gearmotor/          Φ28mm
Helical gears in 1st stage,low backlash,ceramic pins are optional  ,,,  
Specifications of DC motor/
1 Nominal voltage/        12V DC 24V DC
2 No load current /     300 mA 61 mA
3 No load speed/ 7430 RPM 7700 RPM
4 Rated current/     3364 mA 1682 mA
5 Rated speed/ 6597RPM 6831RPM
6 Rated torque/ 51.38 mNm 49.88mNm
7 Stall current/        27630 mA 14424 mA
8 Stall torque/   458 mNm 442.1 mNm
9 Max. efficiency/      81.0% 84.0%
10 Ambient temperature/         -20°C~+65°C
11 Output bearing/ Sleeve bearing
12 Type of brush/      Carbon brush
Specifications of gearmotor under 12VDC/12VDC
Stage Ratio Rated current Rated speed Rated torque Max.momentary current Max.momentary torque Weight
1 3.7:1 3400 mA 1783 RPM 161.8 mNm 5300 mA 242.7 mNm 254 g
1 4.3:1 3400 mA 1534 RPM 187.2 mNm 5300 mA 280.8 mNm 254 g
1 5.2:1 3400 mA 1731 RPM 226.3 mNm 5300 mA 339.4 mNm 254 g
2 16:1 3400 mA 412 RPM 594 mNm 5300 mA 891  mNm 277 g
2 19:1 3400 mA 347 RPM 705 mNm 5300 mA 1058 mNm 277 g
2 27:1 3400 mA 244 RPM 1000 mNm 5300 mA 1500 mNm 277 g
3 59:1 3400 mA 112 RPM 1862 mNm 5300 mA 2793 mNm 300 g
3 79:1 3400 mA 83 RPM 2493 mNm 5300 mA 3740 mNm 300 g
3 99:1 3400 mA 67 RPM 3124 mNm 5300 mA 4686 mNm 300 g
3 139:1 3400 mA 47 RPM 4386 mNm 5300 mA 6580 mNm 300 g
4 264:1 3150 mA 25 RPM 6000 mNm 4535 mA 9000 mNm 325 g
4 337:1 2520 mA 20 RPM 6000 mNm 3620 mA 9000 mNm 325 g
4 516:1 1750 mA 14 RPM 6000 mNm 2472 mA 9000 mNm 325 g
4 721:1 1350 mA 10 RPM 6000 mNm 2400 mA 9000 mNm 325 g
Specifications of gearmotor under 24VDC/24VDC
Stage Ratio Rated current Rated speed Rated torque Max.momentary current Max.momentary torque Weight
1 3.7:1 1700 mA 1844 RPM 157.1 mNm 2580 mA 235.6 mNm 254 g
1 4.3:1 1700 mA 1594 RPM 181.7 mNm 2580 mA 272.6 mNm 254 g
1 5.2:1 1700 mA 1318 RPM 219.7 mNm 2580 mA 329.6 mNm 254 g
2 16:1 1700 mA 427 RPM 279    mNm 2580 mA 418.5 mNm 277 g
2 19:1 1700 mA 360 RPM 684.7 mNm 2580 mA 1571 mNm 277 g
2 27:1 1700 mA 253 RPM 973    mNm 2580 mA 1460 mNm 277 g
3 59:1 1700 mA 116 RPM 1807 mNm 2580 mA 2711 mNm 300 g
3 79:1 1700 mA 86 RPM 2420 mNm 2580 mA 3630 mNm 300 g
3 99:1 1700 mA 69 RPM 3033 mNm 2580 mA 4550 mNm 300 g
3 139:1 1700 mA 49 RPM 4258 mNm 2580 mA 6387 mNm 300 g
4 264:1 1530 mA 26 RPM 6000 mNm 2200 mA 9000 mNm 325 g
4 337:1 1220 mA 21 RPM 6000 mNm 1750 mA 9000 mNm 325 g
4 516:1 820 mA 14RPM 6000 mNm 1200 mA 9000 mNm 325 g
4 721:1 610 mA 10 RPM 6000 mNm 900  mA 9000 mNm 325 g
                 
Pict

 
          Gearbox stages Length of gearbox X Length of gearmotor  L
            1 28.7 92.7
            2 35.7 99.7
            3 42.7 106.7
            4 49.7 113.7

Typical applications:
 

  1. ATM in bank,Robot,Door-lock,Auto shutter, USB fan,Slot machine,Money detector, Coin refund devices
  2. Currency count machine, Towel dispensers, Automatic doors,Peritoneal machine
  3. Automatic TV rack, Office equipemt ,Household appliances,Automatic, medical screwdriver, robotic arms
  4. Lab stirrer, Cosmetology instrument, Medical devices, Hairdressing equipment,Cameras,Health-care articles

Miscellanea:
 

  1. Please contact us to get detailed specifications and drawings for the geared motor you’re looking for.
  2. We are able to design and produce the geared motor you specified.(OEM & ODM).
  3. Please visit us at silent to get more information.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Operating Speed: Low Speed
Power Source: Permanent Magnet
Function: Control
Casing Protection: Explosion-Proof Type
Number of Poles: 4
Structure: Electromagnetic
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

dc motor

How does the speed control of a DC motor work, and what methods are commonly employed?

The speed control of a DC (Direct Current) motor is essential for achieving precise control over its rotational speed. Various methods can be employed to regulate the speed of a DC motor, depending on the specific application requirements. Here’s a detailed explanation of how speed control of a DC motor works and the commonly employed methods:

1. Voltage Control:

One of the simplest methods to control the speed of a DC motor is by varying the applied voltage. By adjusting the voltage supplied to the motor, the electromotive force (EMF) induced in the armature windings can be controlled. According to the principle of electromagnetic induction, the speed of the motor is inversely proportional to the applied voltage. Therefore, reducing the voltage decreases the speed, while increasing the voltage increases the speed. This method is commonly used in applications where a simple and inexpensive speed control mechanism is required.

2. Armature Resistance Control:

Another method to control the speed of a DC motor is by varying the armature resistance. By inserting an external resistance in series with the armature windings, the total resistance in the circuit increases. This increase in resistance reduces the armature current, thereby reducing the motor’s speed. Conversely, reducing the resistance increases the armature current and the motor’s speed. However, this method results in significant power loss and reduced motor efficiency due to the dissipation of excess energy as heat in the external resistance.

3. Field Flux Control:

Speed control can also be achieved by controlling the magnetic field strength of the motor’s stator. By altering the field flux, the interaction between the armature current and the magnetic field changes, affecting the motor’s speed. This method can be accomplished by adjusting the field current through the field windings using a field rheostat or by employing a separate power supply for the field windings. By increasing or decreasing the field flux, the speed of the motor can be adjusted accordingly. This method offers good speed regulation and efficiency but requires additional control circuitry.

4. Pulse Width Modulation (PWM):

Pulse Width Modulation is a widely used technique for speed control in DC motors. It involves rapidly switching the applied voltage on and off at a high frequency. The duty cycle, which represents the percentage of time the voltage is on, is varied to control the effective voltage applied to the motor. By adjusting the duty cycle, the average voltage across the motor is modified, thereby controlling its speed. PWM provides precise speed control, high efficiency, and low power dissipation. It is commonly employed in applications such as robotics, industrial automation, and electric vehicles.

5. Closed-Loop Control:

In closed-loop control systems, feedback from the motor’s speed or other relevant parameters is used to regulate the speed. Sensors such as encoders or tachometers measure the motor’s actual speed, which is compared to the desired speed. The difference, known as the error signal, is fed into a control algorithm that adjusts the motor’s input voltage or other control parameters to minimize the error and maintain the desired speed. Closed-loop control provides excellent speed regulation and accuracy, making it suitable for applications that require precise speed control, such as robotics and CNC machines.

These methods of speed control provide flexibility and adaptability to various applications, allowing DC motors to be effectively utilized in a wide range of industries and systems.

dc motor

How is the efficiency of a DC motor determined, and what factors can affect it?

In a DC (Direct Current) motor, efficiency refers to the ratio of the motor’s output power (mechanical power) to its input power (electrical power). It is a measure of how effectively the motor converts electrical energy into mechanical work. The efficiency of a DC motor can be determined by considering several factors that affect its performance. Here’s a detailed explanation of how the efficiency of a DC motor is determined and the factors that can influence it:

The efficiency of a DC motor is calculated using the following formula:

Efficiency = (Output Power / Input Power) × 100%

1. Output Power: The output power of a DC motor is the mechanical power produced at the motor’s shaft. It can be calculated using the formula:

Output Power = Torque × Angular Speed

The torque is the rotational force exerted by the motor, and the angular speed is the rate at which the motor rotates. The output power represents the useful work or mechanical energy delivered by the motor.

2. Input Power: The input power of a DC motor is the electrical power supplied to the motor. It can be calculated using the formula:

Input Power = Voltage × Current

The voltage is the electrical potential difference applied to the motor, and the current is the amount of electrical current flowing through the motor. The input power represents the electrical energy consumed by the motor.

Once the output power and input power are determined, the efficiency can be calculated using the formula mentioned earlier.

Several factors can influence the efficiency of a DC motor:

1. Copper Losses:

Copper losses occur due to the resistance of the copper windings in the motor. These losses result in the conversion of electrical energy into heat. Higher resistance or increased current flow leads to greater copper losses and reduces the efficiency of the motor. Using thicker wire for the windings and minimizing resistance can help reduce copper losses.

2. Iron Losses:

Iron losses occur due to magnetic hysteresis and eddy currents in the motor’s iron core. These losses result in the conversion of electrical energy into heat. Using high-quality laminated iron cores and minimizing magnetic flux variations can help reduce iron losses and improve efficiency.

3. Friction and Windage Losses:

Friction and windage losses occur due to mechanical friction between moving parts and air resistance. These losses result in the conversion of mechanical energy into heat. Proper lubrication, efficient bearing systems, and aerodynamically optimized designs can help minimize friction and windage losses.

4. Brush and Commutator Losses:

In brushed DC motors, brush and commutator losses occur due to the friction and electrical resistance at the brush-commutator interface. These losses result in the conversion of electrical energy into heat. Using high-quality brushes and commutators, reducing brush voltage drop, and minimizing the number of commutator segments can help reduce these losses.

5. Magnetic Field Design:

The design of the magnetic field in the motor significantly affects its efficiency. Optimizing the magnetic field for the specific application, such as selecting appropriate magnet materials or designing efficient electromagnets, can improve the motor’s efficiency.

6. Motor Load:

The load on the motor, including the torque and speed requirements, can impact its efficiency. Operating the motor close to its optimal load conditions or utilizing speed control techniques, such as pulse width modulation (PWM), can help improve efficiency by reducing unnecessary power consumption.

7. Motor Size and Construction:

The size and construction of the motor can influence its efficiency. Properly sizing the motor for the intended application and optimizing the design for reduced losses, improved cooling, and efficient heat dissipation can enhance overall efficiency.

It’s important to note that the efficiency of a DC motor is typically highest at or near its rated load conditions. Deviating significantly from the rated load can result in reduced efficiency.

In summary, the efficiency of a DC motor is determined by comparing the output power to the input power. Factors such as copper losses, iron losses, friction and windage losses, brush and commutator losses, magnetic field design, motor load, and motor size and construction can all influence the efficiency of a DC motor. By considering and optimizing these factors, the overall efficiency of the motor can be improved.

dc motor

Can DC motors be used in robotics, and if so, what are some notable applications?

Yes, DC (Direct Current) motors can be used in robotics, and they are widely employed in various robotic applications. DC motors offer several advantages that make them suitable for robotic systems, including their controllability, compact size, and versatility. Here’s a detailed explanation of how DC motors are used in robotics and some notable applications:

DC Motors in Robotics:

DC motors are commonly used in robotics due to their ability to provide precise speed control and torque output. They can be easily controlled by adjusting the voltage applied to the motor, allowing for accurate and responsive motion control in robotic systems. Additionally, DC motors can be designed in compact sizes, making them suitable for applications with limited space and weight constraints.

There are two main types of DC motors used in robotics:

  1. DC Brushed Motors: These motors have a commutator and carbon brushes that provide the electrical connection to the rotating armature. They are relatively simple in design and cost-effective. However, they may require maintenance due to brush wear.
  2. DC Brushless Motors: These motors use electronic commutation instead of brushes, resulting in improved reliability and reduced maintenance requirements. They are often more efficient and offer higher power density compared to brushed motors.

Notable Applications of DC Motors in Robotics:

DC motors find applications in various robotic systems across different industries. Here are some notable examples:

1. Robotic Manipulators: DC motors are commonly used in robotic arms and manipulators to control the movement of joints and end-effectors. They provide precise control over position, speed, and torque, allowing robots to perform tasks such as pick-and-place operations, assembly, and material handling in industrial automation, manufacturing, and logistics.

2. Mobile Robots: DC motors are extensively utilized in mobile robots, including autonomous vehicles, drones, and rovers. They power the wheels or propellers, enabling the robot to navigate and move in different environments. DC motors with high torque output are particularly useful for off-road or rugged terrain applications.

3. Humanoid Robots: DC motors play a critical role in humanoid robots, which aim to replicate human-like movements and capabilities. They are employed in various joints, including those of the head, arms, legs, and hands, allowing humanoid robots to perform complex movements and tasks such as walking, grasping objects, and facial expressions.

4. Robotic Exoskeletons: DC motors are used in robotic exoskeletons, which are wearable devices designed to enhance human strength and mobility. They provide the necessary actuation and power for assisting or augmenting human movements, such as walking, lifting heavy objects, and rehabilitation purposes.

5. Educational Robotics: DC motors are popular in educational robotics platforms and kits, including those used in schools, universities, and hobbyist projects. They provide a cost-effective and accessible way for students and enthusiasts to learn about robotics, programming, and control systems.

6. Precision Robotics: DC motors with high-precision control are employed in applications that require precise positioning and motion control, such as robotic surgery systems, laboratory automation, and 3D printing. The ability of DC motors to achieve accurate and repeatable movements makes them suitable for tasks that demand high levels of precision.

These are just a few examples of how DC motors are used in robotics. The flexibility, controllability, and compactness of DC motors make them a popular choice in a wide range of robotic applications, contributing to the advancement of automation, exploration, healthcare, and other industries.

China factory 36mm Diameter Long Life Micro Brushless 12V/24V Pm DC Planetary Gear Motor   vacuum pump booster	China factory 36mm Diameter Long Life Micro Brushless 12V/24V Pm DC Planetary Gear Motor   vacuum pump booster
editor by CX 2024-04-17